NUMERICAL METHODS-LECTURE XII: CGE MODELLING

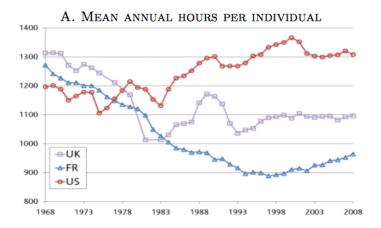
(See Harberger 1962, Shoven & Whalley 1984, Gallen & Mulligan 2014)

Trevor Gallen

Fall, 2015

FIRST, AN ASIDE FROM LAST CLASS

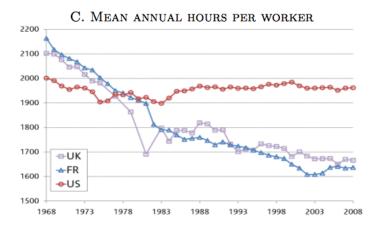
Aren't hours inflexible?


$$L_t = \sum_{i \in I} N_i H_i$$

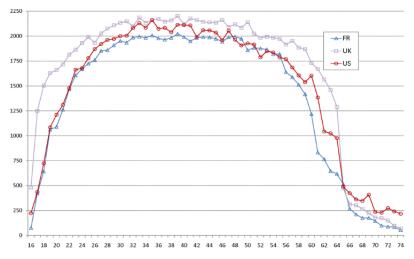
or, to make clear a focus on age:

$$L_t = \sum_{a \in [16,90]} \sum_{i \in I_a} N_i H_i$$

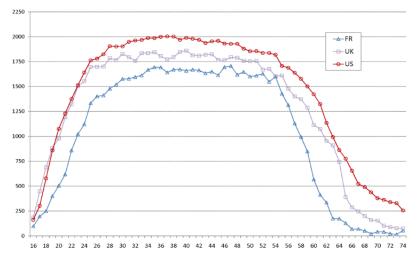
Intensive and extensive (Mulligan 1999).


Blundell et al. 2011: Aggregate Hours

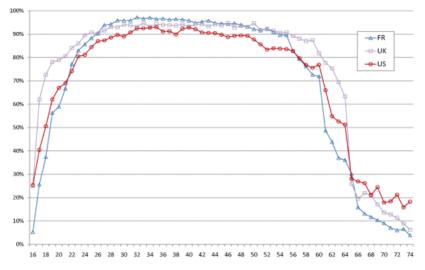
Blundell et al. 2011: Employment



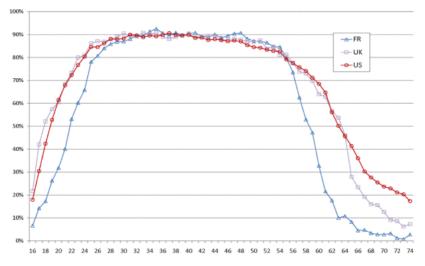
Blundell et al. 2011: Hours/Worker


Blundell et al. 2011: Male Tot. Hrs: 1977

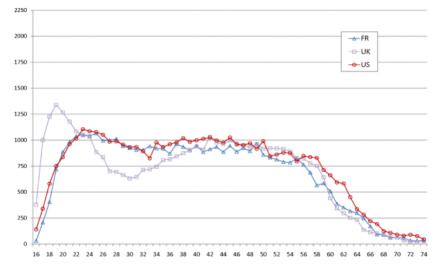
A. Male 1977


Blundell et al. 2011: Male Tot. Hrs: 2007

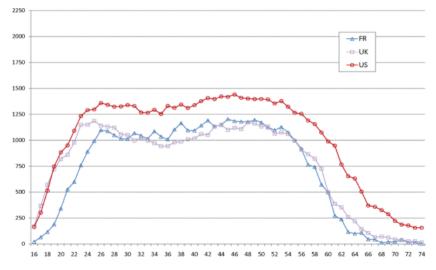
B. MALE 2007


Blundell et al. 2011: Male Emp: 1977

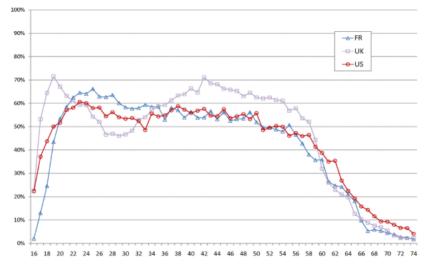
A. Male 1977


Blundell et al. 2011: Male Emp: 2007

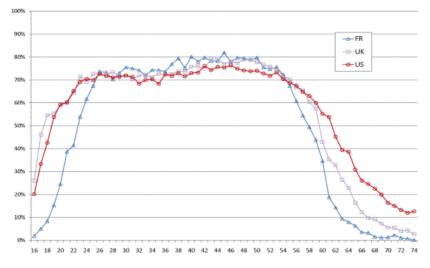
B. MALE 2007


BLUNDELL ET AL. 2011: FEMALE TOT. HRS: 1977

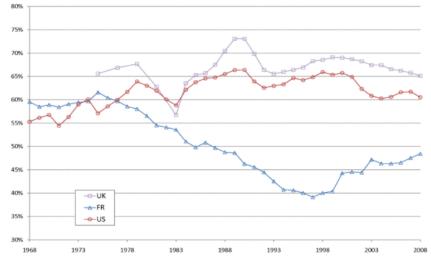
A. Female 1977


Blundell et al. 2011: Female Tot. Hrs: 2007

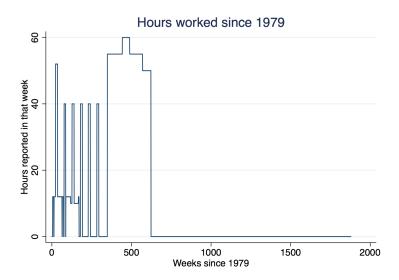
B. Female 2007


Blundell et al. 2011: Female Emp: 1977

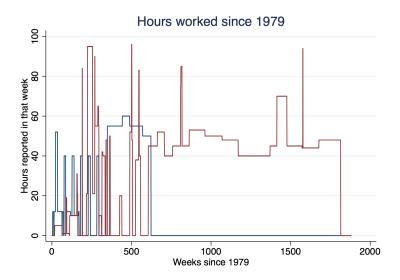
A. Female 1977

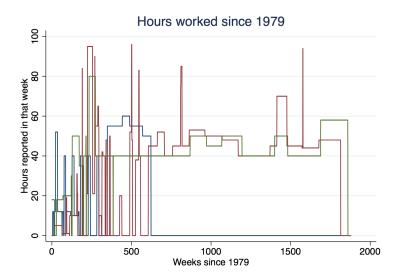

Blundell et al. 2011: Female Emp: 2007

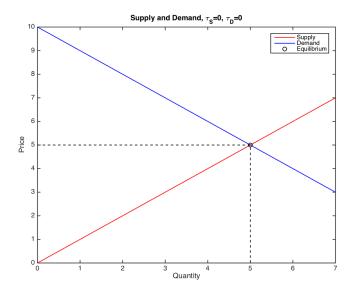
B. Female 2007

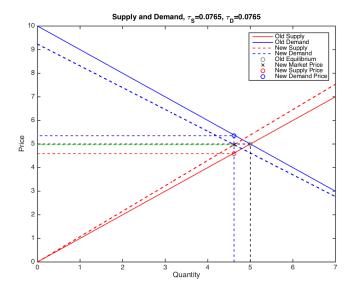


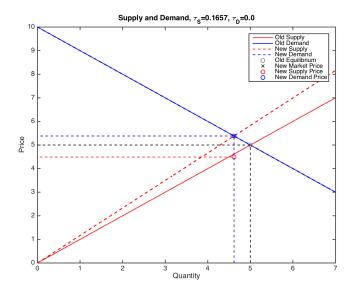
Blundell et al. 2011: Youth at work

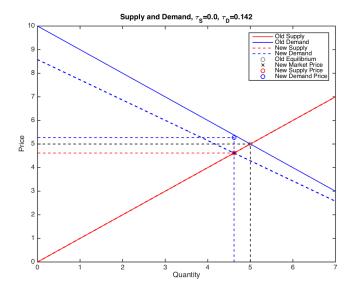



NLSY 1979


NLSY 1979




NLSY 1979



- Federal Insurance Contributions Act funds Social Security & Medicare
- ▶ In 2015, 7.65% employer, 7.65% employee
- Every so often, a temporary cut or permanent hike
- Example: in 2010 and 2011, FICA employee portion reduced to 5.65%
- Who benefits?

- Incidence is important
- What if we had two industries, two types of labor?
- Labor demand for one depends on labor demand for other (CES)
- Free labor supply means after-tax wages must be equal within type
- Harberger:
 - Two factors: labor and capital
 - ► Two industries: "corporate" and "noncorporate"

	Labor	Capital
Corporate	La	Ka
Non-corporate	L_b	K_b

Labor Capital Corporate L_a K_a Non-corporate L_b K_b

Who bears the incidence? Is capital harmed? Is labor harmed?

	Labor	Capital
Corporate	La	Ka
Non-corporate	L _b	K_b

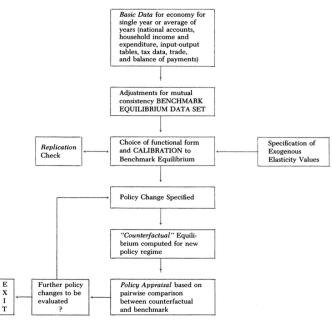
- Who bears the incidence? Is capital harmed? Is labor harmed?
- What if $K_a + K_b$, $L_a + L_b$, and $P_a Y_a + P_b Y_b$ stays the same?

	Labor	Capital
Corporate	La	Ka
Non-corporate	L _b	K_b

- Who bears the incidence? Is capital harmed? Is labor harmed?
- What if $K_a + K_b$, $L_a + L_b$, and $P_a Y_a + P_b Y_b$ stays the same?
- Ans: Capital can actually benefit, labor harmed!

	Labor	Capital
Corporate	La	Ka
Non-corporate	L _b	K_b

- Who bears the incidence? Is capital harmed? Is labor harmed?
- What if $K_a + K_b$, $L_a + L_b$, and $P_a Y_a + P_b Y_b$ stays the same?
- Ans: Capital can actually benefit, labor harmed!
- Why?


- Basic idea:
 - Say taxed sector was heavy in untaxed input L
 - With tax, sector shrinks
 - As taxed sector shrinks, other sector absorbs its K and L
 - Taxed sector releases little K and lots of L
 - If untaxed sector can't absorb much L, price falls, potentially a lot
 - Example
 - Taxed sector has production function $min(10L_b, K_b)$
 - Untaxed sector has production function $L_b^{\alpha} K_b^{1-\alpha}$
 - For untaxed sector to absorb L, wages (all wages!) must decline precipitously

- Harberger 1968 gave analytical formulas
- Numerical examples with Cobb-Douglas and Leontief are possible
- What if we want to go further?
- Want to write down a CGE model

CGE MODELS

- Assume functional forms
- Interacting agents (agent FOC's)
- Markets clear
- Everything adds up

CGE MODELS

I

CGE Example: Gallen & Mulligan 2014

- Want to understand PPACA
- Two sectors: taxed and untaxed
- Two types of labor: low-skill and high-skill
- Many types of firms, some primarily low-skill, some primarily high-skill

Gallen & Mulligan 2014

- At core, firms differ in two ways
 - Their ability to offer healthcare (administrative overhead)
 - Their (ideal) skill composition
- Firms either lose production by administrating healthcare or by not having healthcare

Gallen & Mulligan 2014: Firs

Firm production for type i is:

$$y(i) = z(i)e^{-\delta(i)\ln(i) - (1 - \ln(i))\chi} \left[(1 - \alpha(i))K(i)^{\frac{\sigma-1}{\sigma}} + \alpha(i)A(i)L(i)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}$$

- z(i) is overall productivity
- ▶ δ(i) is insurance cos
- χ is non-insurance cost
- Ins(i) is binary insurance decision
- α(i) is skill weight
- K(i) is high-skilled labor
- L(i) is low-skilled labor
- σ is elasticity of substitution
- A(i) is low-skill technology
- ► $i \in [0, 1]$, administrative cost distribution quantiles $\delta(i)$ (also z(i), $\alpha(i)$, A(i)).

Gallen & Mulligan 2014: Taxes

► Taxes in sector *i* on factors *L* and *K* (firms):

$$(1+\tau_{iL})w, (1+\tau_{iK})r$$

Reward to work for low- and high-skilled labor:

$$(1-s_L)w, (1-s_K)r$$

Gallen & Mulligan 2014: Household Preferences

Representative household's utility:

$$\log\left(\int_{0}^{1} e^{\rho(i)} y(i)^{\frac{\lambda-1}{\lambda}} di\right)^{\frac{\lambda}{\lambda-1}} \\ -\gamma_{L} \frac{\eta}{1+\eta} \left(\int_{0}^{1} L(i) di\right)^{\frac{1+\eta}{\eta}} \\ -\gamma_{K} \frac{\eta}{1+\eta} \left(\int_{0}^{1} K(i) di\right)^{\frac{1+\eta}{\eta}}$$

- $\rho(i)$ reflects consumer preferences over sectors
- λ is elasticity of substitution over sectoral output
- η is the Frisch elasticity of labor supply
- γ_L and γ_K are the disutility of work

GALLEN & MULLIGAN 2014: HOUSEHOLD B.C.

Budget constraint:

$$\int_0^1 p(i)y(i)di = (1-s_L)w \int_0^1 L(i)di + (1-s_K)r \int_0^1 K(i)di + b$$

- Where p(i) is sectoral price
- b is a lump-sum transfer

Gallen & Mulligan 2014: Equilibrium - I

Need to know tax rates for

 $\{lo - skill, hi - skill\} \times \{none, NGI, ESI\}$

- ▶ Need to know taste parameters $\eta, \lambda, \gamma_L, \gamma_H$
- Need to know distributions for $\alpha(i), \delta(i), \rho(i), A(i), z(i)$.
- Our equilibrium will find r and w and firm decisions for employment, output, prices, and coverage such that:
 - industry patterns of employment and consumption maximize utility
 - subject to the HH B.C.
 - Industry employment, output, and coverage are consistent with their utility function
 - Coverage decision comes at minimum production cost
 - Each industry has zero profits

GALLEN & MULLIGAN 2014: SIMPLE CALIBRATION

- Look up initial quantities of labor by sector in March 2012 CPS
- Assume elasticity of substitution high vs. low-skill labor of 1.5.
- Assume elasticity of ESI offering with respect to price
- Measure tax rates

Gallen & Mulligan 2014: Tax Rates

ACA Tax Rates

Employer Type	without ACA		with ACA	
	High skill	Low Skill	High skill	Low skill
	Tax Amounts			
ESI	-2,554	-2,421	-1,562	7,363
NGI	0	0	2,694	2,295
Uninsured	0	0	6,027	13,192
Employer Type	Tax Rates			
ESI	4.6%	0.2%	5.8%	36.8%
NGI	7.7%	7.7%	11.2%	15.6%
Uninsured	7.7%	7.7%	15.8%	65.9%

Gallen & Mulligan 2014: Functional forms

- Assume consumer preferences over sector $\rho(i)$ is quadratic
- Assume skill intensity α(i) and cost of administrating health insurance δ(i) are linear.
- Set A(i) to a constant ($\alpha(i)$ will cause low skill to vary).

GALLEN & MULLIGAN 2014: MATCHING MOMENTS

- Set constant and slope of α(i), ρ(i) and the average δ(i) − χ so
 - 1. Pre-ACA Employee compensation by skill level is right
 - 2. Composition of workforce by skill level and ESI coverage is right

GALLEN & MULLIGAN 2014: MATCHING MOMENTS-I

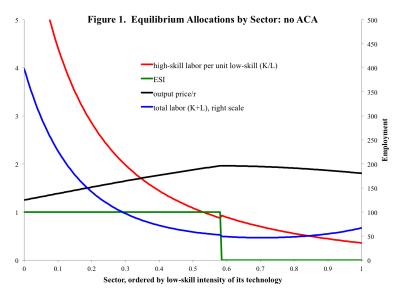
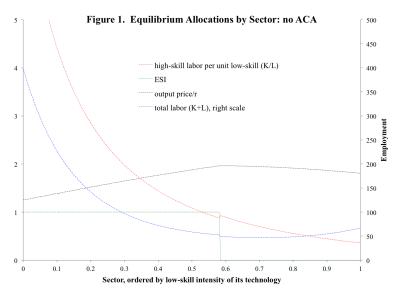
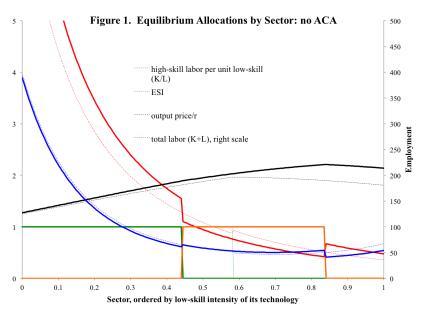
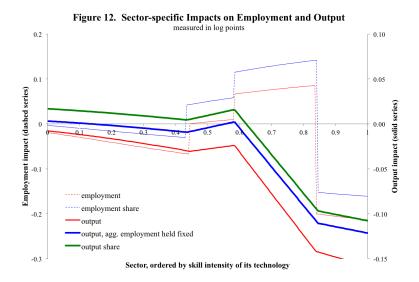




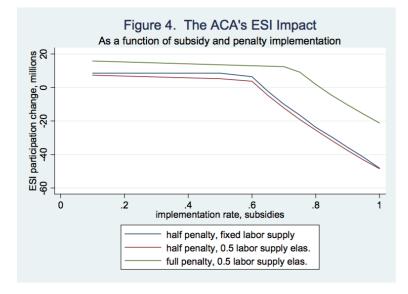
Figure 3. Compensation Ratios and the Surplus from ESI


Gallen & Mulligan 2014: Matching Moments-II

Gallen & Mulligan 2014: Matching Moments-II



Gallen & Mulligan 2014: Results-I



47 / 56

Gallen & Mulligan 2014: Results-II

GALLEN & MULLIGAN 2014: RESULTS-II

Gallen & Mulligan 2014: Results

- Less ESI, as $\sim 8\%$ of firms drop out of ESI
- A lot less low-skill ESI, as low-skill (non-ESI) firms become more intensive in low-skill workers
- More high-skill ESI, as high-skill (ESI) firms become more intensive in high-skill workers
- \blacktriangleright $\sim 3\%$ less working hours, as low-skill step out of labor force
- $\blacktriangleright ~\sim \! 2\%$ less output, as firms skill mix becomes distorted and low-skill step out of work
- > 20 million people (10 million workers) leave ESI
- Effects are *extremely* nonlinear, depend on implementation rate

Firms, workers are making a *joint* decision

- Firms, workers are making a *joint* decision
- Workers in one sector impact workers from another sector

- Firms, workers are making a *joint* decision
- ► Workers in one sector impact workers from another sector
- Normally, we might not care about this, but differential rewards are dramatic!

- Firms, workers are making a *joint* decision
- Workers in one sector impact workers from another sector
- Normally, we might not care about this, but differential rewards are dramatic!
- Any elasticity of substitution (and difference) and you're cooking with gas

- Firms, workers are making a *joint* decision
- Workers in one sector impact workers from another sector
- Normally, we might not care about this, but differential rewards are dramatic!
- Any elasticity of substitution (and difference) and you're cooking with gas
- Some industries "win," some industries "lose"

- Firms, workers are making a *joint* decision
- ► Workers in one sector impact workers from another sector
- Normally, we might not care about this, but differential rewards are dramatic!
- Any elasticity of substitution (and difference) and you're cooking with gas
- Some industries "win," some industries "lose"
- Calibration is important! Massachusetts is high skill state with primarily high skill industries